美股研究社指出:不同风格的策略对于回测的要求是不同的,比如对于多因子选股或者趋势策略等,需要注意的几点是:
1. 区分好样本内数据和样本外数据,这个和机器学习很类似,样本内数据用于训练,样本外数据用于校验。这样做的目的是为了避免过拟合陷阱。
2. 收益的分布,看看你回测后所有交易的收益分布,看看你的收益来源是少数的几次大的收益还是来源多次的小的收益。来源于大的收益,你的收益波动性就很大,实盘往往会达不到你的效果。
3. 参数的稳定性。如果你某个参数过敏感,随便调整下就对收益影响很大,那你实盘的情况和模拟盘也有很大可能会有出入。
这类策略严格来说,避免了一些常见的坑,还是比较容易做到回测和实盘类似的。
京东量化最新推出了一些通达信的技术指标还不错,你们可以去看一下,应该能学到好多东西。
很多时候我们进行数字货币投资,然后有没有过多时间去关注和操盘。我们想要操作按照我们的意志来走。这个时候量化交易系统就应运而生。量化交易最简单的理解就是比如你要去学校,你每天都可以有不同的路线去学校,然后通过多年去学校的经验自己规划好一条最近的道路,然后每天都按照这条出来走。一个量化交易系统的形成,一般都会经历这几个过程。
1,根据你多年对操盘的理解,然后总结出来几十条规则,然后按照这个规则就可以达到你操盘的目的。
2,通过编程的语言把你的想法变成程序,没办法变成程序的规则这个时候就被放弃了。
3,对你形成的量化程序进行回测,目的是(1)看量化程序的逻辑是否有明显的漏洞(2)用过去的数据演练来得出未来的答案.
4,所以的程序都做好了后我们可以在模拟盘上进行模拟交易,这样可以在不付出任何代价的情况下进行实弹演练。
5,上实盘进行交易,这个时候是检验你的量化交易系统的策略的最终战场了,中间出现任何偏差随时做好人工干预的准备,该优化就进行优化。
量化交易在国内来说,兴起于2005年左右。但由于投资者水平问题,基础还是比较薄弱,市场还比较小,所以大众化量化交易平台的发展热度不足。大多平台都是机构自己构建的自用平台。
能实盘交易的量化平台只有几个,如聚宽,掘金,文华财经,开拓者,TradeStation等
能提供量化测试的就比较多,镭矿,优矿,京东,RiceQuant米筐,果仁,Bigquant,还有以上可以实盘的这些,等等。
基本采用Python语言为主,也有采用C ,C#,Easy Language 麦语言等。
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
版权声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。
免责声明:本文为转载,非本网原创内容,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如有疑问请发送邮件至:bangqikeconnect@gmail.com